Design Principles for DIALS

DIALS Development Team
DIALS-3 Workshop

& CCP4

diamond



Preface

Describing only developments on integration
engine

Work funded by EU through Biostruct-X work
package 6, Diamond Light Source and CCP4

Builds on massive amount of existing
literature

Working with LMB, Gleb Bourenkov



Overview

“Top level” view

Design principles

— Global models, global refinement
— Use of interfaces

— Run-time extensibility

— Flexibility of use

Benefits of design
Plans



Top-level view (one of our goals)

©®
@ @ Detector Model
Crystal Model Source Model Experiment simulation ‘ sensors with
profile projection abstract frames
d, d.. 04

U, B, mosaicity, A, dA, direction,
symmetry divergence

N

initial profile

J patch projected on ', detector response
'. detector frame | PSF, distortion
® \ /
Profile Model ' @ l .‘ -—>
e.g. numerical, function Goniometer Model
of ¢ or time R, axis R
_ @ image space compare to
r 1 red ~ 1e) projection observed patch
L 4 edge Mode

¢, d¢, exposure time

<& CCP4

diamond



Global model, global refinement

 Mosflm, XDS have “local” model, continuous
refinement

— Model to integrate frame i different to model for
frame |

— Harder to reliably parallelize to get identical
results to serial code

* Have global (time dependent) model for all
parameters => can run analysis in parallel



XDS processing 7200 degree set

Refined cell lengths / postrefined values

|cCP4

diamond




Design principles (interfaces)

Detector Interface

PilatusDetector

Pilatus6MDetector

P6MDLSI24Detector

‘ Source Interface Sample Model

ssing API

I itceration ar

gration API

egration
entation @ @@ P4

diamond



Design principles (interfaces)

O links to raw data

AN

Integrator

2D integration

3D integration

base class base class
shoebox handling shoebox handling
. 2D profil
2D summation fitl’z’fi(;ll © 3D XDS 3D Evalis
integrator 5 integrator integrator

integrator




Interface designs

* |Interfaces designed now will be wrong,
though experience from xia2 will help

* Learning by doing, then design interfaces,
then modify implementations to fit

* Take a light-weight approach to modeling — no
UML, just describe in source code




Design principles (extensibility)

Dependencies (crystallographic libraries, openCL, etc.)

_ & CCP4

diamond




Design principles (extensibility)

* This can actually work: use smart inheritance,
registry, factory

 Example from dxtbx:
— Define metaclass for interface

— Write python code inheriting from interface
— Registry searches for and sources python files

— Metaclass auto-registers code, factory to recover

* Dependency on clean interfaces



Design principles (flexibility)

Integration process

Index Minimizer

import /

Initial

Parameterizer
model

/

\
Refiner
/ \
Model Centroids*
/
\ Integrator
/ \
f;f?flili hid, T, or* export

Scale
*Reflections and centroids carry a copy of the model used during integration



Benefits of design

Allow run-time customization e.g. change
workflow

Allow run-time extension with e.g. new
algorithms

Value of new algorithms can be demonstrated
easily

Development of new methods has clear
starting point



Plans

* Re-implement existing methods (see James
Parkhurst talk)

* Produce working version of software this year
including global refinement (see David
Waterman talk)

e Extend this to hybrid method in first
Illustration




Hybrid method

O

© @ Detector Model
Crystal Model Source Model Experiment simulation ‘ sensors with
U, B, mosaicity, A, d2, direction, profile projection ' abstract frames

symmetry divergence d, d., 04

N

initial profile

|

® risi
Profile Model @ l .’ -— ‘
e.g. numerical, function Goniometer Model ;

7

patch projected on | detector response
detector frame | PSF, distortion

of ¢ or time R, axis _
— @ image space compare to
r ] projection observed patch
Wedge Model
oy

¢, d¢, exposure time

& CCP4

diamond



Input from outside

* Dectris involved for proper modelling of the
detector

 Anyone else can be involved to develop “plug
in” detector models



Framework Components



Fundamental data structure

ReflectionList & ObservationList

* Central data storage class: reflections indexed
by miller indices, point at a list of observations
which can have templated form

e Store: |, sigl, reflection profiles, partial
observations, ...

e Parallel operation: fork, merge: different
threads operate on different instances of list



ReflectionList

* |teration 1: map of Miller indices to:
— Prediction
— Shoebox
— Ewald-sphere profile
— 1, sigl
* |teration 2: database:
— Peaks, profiles, predictions etc.

— Many to many map w.r.t. Miller indices -



Acknowledgements

e Support from EU FP7, Diamond Light Source,
CCP4

 CCTBX for providing basis, build chain, huge
amount of raw materials

* [nput from many people @diamond, @LMB,
@EMBL Hamburg, @CCP4 ...



